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	Consider the data from five subjects that were asked miles and minutes to arrive at a destination.
Let X=Miles and Y=Minutes.  Can we estimate minutes using miles?
	Subject
	Miles
X
	Minutes
Y
	[image: ]

	1
	1
	4
	

	2
	3
	6
	

	3
	3
	20
	

	4
	5
	15
	

	5
	8
	20
	


. . .


Consider Miles and Minutes.
	Subject
	Miles
X
	Minutes
Y
	
	X*X
	Y*Y
	X*Y
	
	

	1
	1
	4
	
	1
	16
	4
	
	

	2
	3
	6
	
	9
	36
	18
	
	

	3
	3
	20
	
	9
	400
	60
	
	

	4
	5
	15
	
	25
	225
	75
	
	

	5
	8
	20
	
	64
	400
	160
	
	SS=Sum of Squares

	
	
	
	
	
	
	
	
	SSXX = 108–20*20/5 = 28
SSYY = 1077–65*65/5 = 232
SSXY = 317–20*65/5 = 57

	Sum
	20
	65
	Sum
	108
	1077
	317
	
	

	
	
	
	SS
	28
	232
	57
	
	


SS = Sum of Squares of Error = Sum of Squared Errors
	SSXX= ( X –X )2  = X2–(X)*(X)/n = 108–20*20/5 = 28
SSYY= ( Y –Y )2  = Y2–(Y)*(Y)/n = 1077–65*65/5 = 232
SSXX= ( X –X )*( Y –Y ) = X*Y–(X)*(Y)/n = 317–20*65/5 = 57







	
	Regression Concept
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Let X=Miles and Y=Minutes.  Can we estimate minutes using miles?
	Subject
	Miles
X
	Minutes
Y
	[image: ]

	1
	1
	4
	

	2
	3
	6
	

	3
	3
	20
	

	4
	5
	15
	

	5
	8
	20
	



	1. As ‘Miles’ increases, ‘Minutes’ increases.  Thus, there is a positive relationship or positive association between ‘Miles’ and ‘Minutes’.  If ‘Minutes’ decreased as ‘Miles’ increased, the relationship would be negative.
2. Outlier: The data point for subject 3, (X=3,Y=20), might possibly be an outlier.  To establish an outlier, an argument needs to be presented based on either strong observation or logic.  A strong observation would be when one point is obviously different from all the other points.  For example, if we saw a point (X=3, Y=500), we could argue the point is an outlier due to the unreasonable magnitude of the difference between the point and the remaining points.  A strong logic would be that subject 3 which generated the data point Y=20 minutes was the only subject that had an accident on his way and that is why the time is so large.  An event that the other subjects did not encounter.  Also, an event based on a factor not desired in the determination of the relationship between the two variables.
3. To represent the relationship between the two variables, consider a linear line with the equation in intercept-slope form, Y=a+b*X, where a and b are constants.  
{Example:  To illustrate the line through the data, visually select
    a=5 and b=2.  Then, plot the line Y=5+2*X through the data.}
4. The line Y=5+2*X can be used to estimate Y given a value of X.  Technically, estimate of the population mean of Y given X where the population mean of Y is expressed as E[Y|X]. 
{For example: if X=3, then Y=11, which estimates E[Y|X=3];
                 and, if X=7, then Y=19, which estimates E[Y|X=7].}
5. The line, Y=5+2*X, is called a regression line because it estimates the mean of “Y” given “X”, or simply, estimates Y given X.
6. Since X is used to estimate Y, Y is called the “Dependent Variable” and X is called the “Independent Variable”.
7. Since X is used to estimate Y, the terminology is “Regress Y on X” or “Regress the Dependent Variable on the Independent Variable”.






	

	Regression Definitions and Terminology
	



Let X=Miles and Y=Minutes.  Can we estimate minutes using miles?
	Subject
	Miles
X
	Minutes
Y
	[image: ]

	1
	1
	4
	

	2
	3
	6
	

	3
	3
	20
	

	4
	5
	15
	

	5
	8
	20
	



Consider the data and the line, Y=5+2*X.
	
	The regression line: Y=5+2*X
Now, the sample mean of Y isY=Y/n=13
But the regression values of Y for X=3 are:
Model (Ŷ=11): Ŷ=b0+b1*X=5+2*3=11
Error,  = (Ŷ – Y) between Model and Data
Data (Y=6): Y=0+1*X+
0 and 1 are Parameters.  is an error term.
b0 and b1 are Estimates of the Parameters.
E[Y|X] is the Parameter, population mean of Y|X.
Ŷ=b0+b1*X is the Estimate of the Parameter.



	Model of Data: Y=0+1*X+
(Example: Data sets above.)
	Y is the Dependent Variable representing Data
X is the Independent Variable representing Data
0 is the “Intercept” parameter
1 is the “Slope” parameter.  
 is the error term, e~N(m,s2)

	Model of Fit: Ŷ=b0+b1*X
(Example: Ŷ=5+2*X )
(Regression Model) 
( Ŷ = estimate of E[Y|X] )
	Ŷ is the estimate of E[Y|X], the population mean of Y conditioned on X representing the value from a regression equation for a given value of X.
b0 is the estimate of 0 (the intercept)
b1 is the estimate of 1 (the slope)

	Mean of Y: isY=Y/n
(Example:Y=
	Y is the sample mean 
or the estimate of E[Y] not conditioned on X 
or the estimate of the mean of Y independent of X



	Y=0+1*X+
	Regression Model of Data

	Ŷ=b0+b1*X      
	Regression Equation 
Regression Model of the Fit of the Data






	

	Least-Squares Regression
	



Model of Data: Y=0+1*X+
Solve for Error term:    =    [ Y – ( 0+1*X) ]
Substitute Estimates:    =    [ Y – ( b0+b1*X) ]
Square Error term:     2 =    [ Y – ( b0+b1*X) ]2
Sum over all data:  2 = [ Y – ( b0+b1*X) ]2
Find b0 and b1 that minimizes the squared error.
	
Min  2  =   Min   [ Y – ( b0+b1*X) ]2
b0,b1               b0,b1



Using calculus:
	Taking derivative,  D(b0)= 2  [ Y – ( b0+b1*X) ] (–1) = 0
Summing through,   Y – n*b0 – b1*X = 0
Collecting terms,  b0 = Y/n – b1*X/n
Alternative form,  b0 = Y – b1 *X
Taking derivative,  D(b1)= 2  [ Y – ( b0+b1*X) ] (–X) = 0
Summing through,   XY – b0*X – b1*X2 = 0
Substituting for b0,  XY – ( Y/n – b1*X/n )*X – b1*X2 = 0
Collecting terms,  b1 XY – (X)*(Y)/n ]/[ X2 – (X)2/n ]
Alternative form,  b1 = SSXY/SSXX 


The regression model that minimizes the sum of squared errors is called “Least-squares regression”.
	Model of Data: Y=0+1*X+
Least-squares Regression Model:  Ŷ=b0+b1*X , for b1=SSXY/SSXX and b0=Y – b1 *X


Example.
	Subject
	1
	2
	3
	4
	5
	Sum
	SS
	
	

	X=Miles
	1
	3
	3
	5
	8
	20
	
	
	

	Y=Minutes
	4
	6
	20
	15
	20
	65
	
	
	SS=Sum of Squares

	X*X
	1
	9
	9
	25
	64
	108
	28
	
	SSXX = 108–20*20/5 = 28
SSYY = 1077–65*65/5 = 232
SSXY = 317–20*65/5 = 57

	Y*Y
	16
	36
	400
	225
	400
	1077
	232
	
	

	X*Y
	4
	18
	60
	75
	160
	317
	57
	
	

	
	
	
	
	
	
	
	
	
	

	b1=SSXY/SSXX = 57/28 = 2.035714286 ≈ 2.0357
b0= Y – b1 *X = (65/5) – (57/28)*(20/5) = 4.857142857 ≈ 4.857
Least-squares Regression Model:  Ŷ=4.857+2.0357*X







	

	Exercises for Least-Squares Regression
	



1.
	Index
	1
	2
	3
	4
	5
	
	b0
	b1

	X
	2
	3
	4
	6
	9
	
	3.026
	0.578

	Y
	4
	5
	5
	7
	8
	
	
	



2.
	Index
	1
	2
	3
	4
	5
	
	b0
	b1

	X
	2
	3
	4
	6
	9
	
	19.649
	-1.052

	Y
	18
	17
	15
	12
	11
	
	
	



3.
	Index
	1
	2
	3
	4
	5
	
	b0
	b1

	X
	2
	3
	4
	6
	9
	
	-0.870
	0.890

	Y
	1
	2
	2
	5
	7
	
	
	



4.
	Index
	1
	2
	3
	4
	5
	
	b0
	b1

	X
	2
	3
	4
	6
	9
	
	6.831
	-0.006

	Y
	7
	6
	8
	6
	7
	
	
	



5.
	Index
	1
	2
	3
	4
	5
	
	b0
	b1

	X
	8
	4
	1
	5
	9
	
	8.374
	2.005

	Y
	22
	17
	10
	19
	28
	
	
	



6.
	Index
	1
	2
	3
	4
	5
	
	b0
	b1

	X
	8
	4
	1
	5
	9
	
	27.942
	-1.767

	Y
	16
	20
	27
	18
	11
	
	
	



7.
	Index
	1
	2
	3
	4
	5
	
	b0
	b1

	X
	1
	0
	-3
	6
	-5
	
	24.808
	1.040

	Y
	26
	25
	21
	31
	20
	
	
	



8.
	Index
	1
	2
	3
	4
	5
	
	b0
	b1

	X
	1
	0
	-3
	6
	-5
	
	25.463
	-0.684

	Y
	23
	26
	28
	22
	29
	
	
	




1	3	3	5	8	4	6	20	15	20	X=Miles

Y=Minutes
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